Abstract

The applicability of artificial neural networks (ANNs) is typically limited to the models they are trained with and little is known about their generalizability, which is a pressing issue in the practical application of trained ANNs to unseen problems. Here, by using the task of identifying phase transitions in spin models, we establish a systematic generalizability such that simple ANNs trained with the two-dimensional ferromagnetic Ising model can be applied to the ferromagnetic qq-state Potts model in different dimensions for q \geq 2q≥2. The same scheme can be applied to the highly nontrivial antiferromagnetic qq-state Potts model. We demonstrate that similar results can be obtained by reducing the exponentially large state space spanned by the training data to one that comprises only three representative configurations artificially constructed through symmetry considerations. We expect our findings to simplify and accelerate the development of machine learning-assisted tasks in spin-model related disciplines in physics and materials science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.