Abstract
Fatigue fracture surface characteristics of five commercially available amorphous polymers [poly(methylmethacrylate) (PMMA), polycarbonate (PC), poly(vinyl chloride) (PVC), polystyrene (PS), and polysulphone (PSF)] as well as bulk-polymerized PMMA prepared over a wide range of molecular weights were studied to determine if common mechanisms of fatigue crack propagation prevail among these glassy polymers. In those polymers with viscosity-average molecular weight ¯Mv≲2×105, the macroscopic appearance of the fracture surface showed the presence of a highly reflective mirror-like region which formed at low values of stress intensity and high cyclic test frequencies (∼100 Hz). The microscopic appearance of this region revealed that many parallel bands exist oriented perpendicular to the direction of crack growth and that the bands increase in size with ΔK. In all instances, the crack front advanced discontinuously in increments equal to the band width after remaining stationary for hundreds of fatigue cycles. Electron fractographic studies verified the discontinuous nature of crack extension through a craze which developed continuously with the load fluctuations. By equating the band size to the Dugdale plastic zone dimension ahead of the crack, a relatively constant yield strength was inferred which agreed well with reported craze stress values for each material. At higher stress intensity levels in all polymers and all values of ¯Mv, another series of parallel bands were observed. These were also oriented perpendicular to the direction of crack growth and likewise increased in size with the range in stress intensity factor, ΔK. Each band corresponded to the incremental advance of the crack during one load cycle, indicating these markings to be classical fatigue striations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.