Abstract
We consider a general self-adjoint spectral problem, nonlinear with respect to the spectral parameter, for linear differential-algebraic systems of equations. Under some assumptions, we present a method for reducing such a problem to a general self-adjoint nonlinear spectral problem for a system of differential equations. In turn, this permits one to pass to a problem for a Hamiltonian system of ordinary differential equations. In particular, in this way, one can obtain a method for computing the number of eigenvalues of the original problem lying in a given range of the spectral parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.