Abstract
Electrokinetic equations for electrophoresis of a soft particle (that is, a hard particle covered with a layer of polyelectrolytes) have been solved previously under the conditions that the net force acting on the soft particle as a whole (the particle core plus the polyelectrolyte layer) must be zero and that the electrical force acting on the polymer segment is balanced with a frictional force exerted by the liquid flow (J. Colloid Interface Sci.163, 474 (1994)). In the present work we replaced the latter condition by the alternative and more appropriate condition that pressure is continuous at the boundary between the surface layer and the surrounding electrolyte solution to solve the electrokinetic equations and obtained the general mobility expression for the electrophoretic mobility of a spherical soft particle. It is found that the general mobility expression thus obtained reproduces all of the approximate mobility expressions derived previously and, in addition, that the continuous pressure condition leads to the correct limiting behavior of the electrophoretic mobility in the case where the frictional coefficient tends to zero (this behavior cannot be derived from the force balance condition for the polyelectrolyte layer).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.