Abstract

The various physical aspects of the general relativistic principles of covariance and strong equivalence are discussed, and their mathematical formulations are analyzed. All these aspects are shown to be present in classical general relativity, although no contemporary formulation of canonical or covariant quantum gravity has succeeded to incorporate them all. This has, in part, motivated the recent introduction of a geometro-stochastic framework for quantum general relativity, in which the classical frame bundles that underlie the formulation of parallel transport in classical general relativity are replaced by quantum frame bundles. It is shown that quantum frames can take over the role played by complete sets of observables in conventional quantum theory, so that they can mediate the natural transference of the general covariance and the strong equivalence principles from the classical to the quantum general relativistic regime. This results in a geometrostochastic mode of quantum propagation in general relativistic quantum bundles, which is mathematically implemented by path integration methods based on parallel transport along horizontal lifts of geodesics for the vacuum expectation values of a quantum gravitational field in a quantum spacetime supermanifold. The covariance features of this field are embedded in a quantum gravitational supergroup, which incorporates Poincare as well as diffeomorphism invariance, and resolves the issue of time in quantum gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.