Abstract
State estimation is a fundamental task in a plethora of applications. Two important classes of linear minimum mean square error (MMSE) estimators are Wiener filters (WFs) and Kalman filters (KFs), the latter being the recursive form of the former for linear discrete state-space (LDSS) dynamic models. The minimum set of uncorrelation conditions regarding states and measurements which allows to formulate a general KF form has been recently introduced in the literature, but for both WFs and KFs a standard key assumption is that the measurement noise covariance is invertible. In this contribution we provide i) an alternative derivation of the WF in the case of a non-invertible measurement covariance matrix, and ii) the proof that under the minimum set of uncorrelation conditions lately released, the KF can always be formulated irrespective of the measurement covariance matrix rank. Notice that these results also apply for Kalman predictors and smoothers, linearly constrained WFs and minimum variance distortionless response (MVDR) filters, therefore being a remarkable result of broad interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.