Abstract

We reconsider the gauge symmetries of the spinning particle by a direct examination of the Lagrangian using a systematic procedure based on the Noether identities. It proves possible to find a set of local bosonic and fermionic gauge transformations that have a simple gauge group structure, which is a true Lie algebra, both for the massless and massive case. This new fermionic gauge transformation of the “position” and “spin” variables in the action decouples from that of the “einbein” and “gravitino”. It is also possible to redefine the fields so that this simple algebra of commutators of the gauge transformations can be derived directly starting from the Lagrangian written in these new variables. We discuss a possible extension of our analysis of this simple model to more complicated cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.