Abstract

We give a complete characterization of bipartite graphs having tree-like Galois lattices. We prove that the poset obtained by deleting bottom and top elements from the Galois lattice of a bipartite graph is tree-like if and only if the graph is a bipartite distance hereditary graph. Relations with the class of Ptolemaic graphs are discussed and exploited to give an alternative proof of the result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.