Abstract

Galloping, also known as Den Hartog instability, is the large amplitude, low frequency oscillation of a structure in the direction transverse to the mean wind direction. It normally appears in the case of bodies with small stiffness and structural damping, when they are placed in a flow provided the incident velocity is high enough. Galloping depends on the slope of the lift coefficient versus angle of attack curve, which must be negative. Generally speaking this implies that the body is stalled after boundary layer separation, which, as it is known in non-wedged bodies, is a Reynolds number dependent phenomenon. Wind tunnel experiments have been conducted aiming at establishing the characteristics of the galloping motion of elliptical cross-section bodies when subjected to a uniform flow, the angles of attack ranging from 0° to 90°. The results have been summarized in stability maps, both in the angle of attack versus relative thickness and in the angle of attack versus Reynolds number planes, where galloping instability regions are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.