Abstract

Reliability evaluation of interconnection networks is of significant importance to the design and maintenance of interconnection networks. The component connectivity is an important parameter for the reliability evaluation of interconnection networks and is a generalization of the traditional connectivity. Let be an integer and G be a connected graph. A g-component cut of G is a vertex set S such that G−S has at least g components. The g-component connectivity of G is the size of the smallest g-component cut. Determining the g-component connectivity is still an unsolved problem in many interconnection networks. In this paper, we prove the lower bound of the g-component connectivity of any n-dimensional hypercube-like networks. We also determine the g-component connectivity of varietal hypercubes and crossed cubes which are the members of hypercube-like networks. As a by-product, we characterize the optimal g-component cut under the condition that any two vertices have exactly two common neighbors if they have of any n-dimensional hypercube-like networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.