Abstract
Co-free Li-rich manganese nickel oxide (LMNO) materials are emerging as an up-and-coming candidate for high-energy–density cathodes. However, they suffer from severe cycling capacity fading and poor performance rates. Herein, the surface functionalization of an LMNO cathode is designed by polypyrrole (PPy) nanostructure coating. We found that PPy [email protected] cathode exhibits high-capacity retention and enhanced rate capabilities, delivering a discharge capacity as high as 191 mAh g−1, with capacity retention of 96%, after ∼ 200 cycles at a current density of 20 mA g−1. The results indicate that the intercalation and doping pseudocapacitance can be varied depending on the synthesis process, morphology (nanowire/nanorod/nanoparticle), size, dispersity, and weight percentage of PPy. Our findings provide an effective strategy to improve the ionic and electronic conductivity of LMNO cathodes and demonstrate that high-capacity and long cycle-life Li-ion batteries can be achieved by regulating the contribution of the intercalation and doping pseudocapacitive charge storage behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.