Abstract
All birds possess a unique venous architecture surrounding the kidneys known as the renal portal system. In veterinary medicine, this system is well known for causing a first-pass effect when medication is administered parenterally via the leg veins, that is venous blood from the leg is filtered before entering general circulation, thus possibly compromising adequate dosage. Additionally, bilateral valves are present in these veins, and it has been hypothesized that they play a crucial role in regulating flow through the kidneys to protect them against increases in blood pressure. While this hypothesis has been acknowledged, it has not been thoroughly explored. We propose that the function of the renal portal valve extends beyond its significance for kidney function, potentially impacting general hemodynamics. Examining anatomical similarities with extant non-avian reptiles, which lack the renal portal shunt with valve, could reveal additional functionalities of this system in birds. Given the endothermic metabolism and the energetically expensive locomotor activity of birds, the resistance of the hepatic and renal portal system might constrain the blood flow from splanchnic to non-splanchnic blood vessels necessary for (sustained) peak performance. Therefore, diverting blood from the renal portal system using the renal portal valve as a regulatory structure might represent a key adaptation to facilitate sustained peak performance. In addition, we hypothesize that this shunt and valve represents a very early adaptation in amniotes, possibly lost in extant non-avian reptiles but enhanced in birds, with a pivotal role in maintaining hemodynamic homeostasis to support the high metabolic rates characteristic of birds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biological reviews of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.