Abstract

We prove that the function and lattice definitions of a narrow operator defined on a Kothe Banach space E on a finite atomless measure space \((\Omega , \Sigma , \mu )\) are equivalent if and only if the set of all simple functions is dense in E. This answers Problem 10.3 from Popov and Randrianantoanina (Narrow operators on function spaces and vector lattices, De Gruyter studies in mathematics 45, De Gruyter, Berlin, 2013).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.