Abstract
We count algebraic numbers of fixed degree d and fixed (absolute multiplicative Weil) height {mathcal {H}} with precisely k conjugates that lie inside the open unit disk. We also count the number of values up to {mathcal {H}} that the height assumes on algebraic numbers of degree d with precisely k conjugates that lie inside the open unit disk. For both counts, we do not obtain an asymptotic, but only a rough order of growth, which arises from an asymptotic for the logarithm of the counting function; for the first count, even this rough order of growth exists only if k in {0,d} or gcd (k,d) = 1. We therefore study the behaviour in the case where 0< k < d and gcd (k,d) > 1 in more detail. We also count integer polynomials of fixed degree and fixed Mahler measure with a fixed number of complex zeroes inside the open unit disk (counted with multiplicities) and study the dynamical behaviour of the height function.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.