Abstract

We count algebraic numbers of fixed degree d and fixed (absolute multiplicative Weil) height {mathcal {H}} with precisely k conjugates that lie inside the open unit disk. We also count the number of values up to {mathcal {H}} that the height assumes on algebraic numbers of degree d with precisely k conjugates that lie inside the open unit disk. For both counts, we do not obtain an asymptotic, but only a rough order of growth, which arises from an asymptotic for the logarithm of the counting function; for the first count, even this rough order of growth exists only if k in {0,d} or gcd (k,d) = 1. We therefore study the behaviour in the case where 0< k < d and gcd (k,d) > 1 in more detail. We also count integer polynomials of fixed degree and fixed Mahler measure with a fixed number of complex zeroes inside the open unit disk (counted with multiplicities) and study the dynamical behaviour of the height function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.