Abstract

In the present study, we have shown the role of different clusterization algorithms on the signals of liquid–gas phase transition in the multifragmentation for the central reactions of \(^{40}\)Ar + \(^{45}\)Sc. We have used the quantum molecular dynamics (QMD) model to generate the phase space of the nucleons and clusterization algorithms based on spatial constraints and its variants, and the energy-based clusterization algorithm. We also present the correlations among fragments within the events via constructing correlation function. We find that the energy-based clusterization algorithm, i.e., simulated annealing clusterization algorithm (SACA) is the most successful among all the available clusterization algorithms. We also find that the event-by-event analysis unfolds and helps to understand reaction picture much better than the quantities constructed by averaging over events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.