Abstract

Abstract In order to develop certain fractional probabilistic analogues of Taylor's theorem and mean value theorem, we introduce the nth-order fractional equilibrium distribution in terms of the Weyl fractional integral and investigate its main properties. Specifically, we show a characterization result by which the nth-order fractional equilibrium distribution is identical to the starting distribution if and only if it is exponential. The nth-order fractional equilibrium density is then used to prove a fractional probabilistic Taylor's theorem based on derivatives of Riemann-Liouville type. A fractional analogue of the probabilistic mean value theorem is thus developed for pairs of nonnegative random variables ordered according to the survival bounded stochastic order. We also provide some related results, both involving the normalized moments and a fractional extension of the variance, and a formula of interest to actuarial science. In conclusion, we discuss the probabilistic Taylor's theorem based on fractional Caputo derivatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call