Abstract
<abstract><p>In this article, the Caputo fractional derivative operator of different orders $ 0 &lt; \alpha\leq1 $ is applied to formulate the fractional-order model of the COVID-19 pandemic. The existence and boundedness of the solutions of the model are investigated by using the Gronwall-Bellman inequality. Further, the uniqueness of the model solutions is established by using the fixed-point theory. The Laplace Adomian decomposition method is used to obtain an approximate solution of the nonlinear system of fractional-order differential equations of the model with a different fractional-order $ \alpha $ for every compartment in the model. Finally, graphical presentations are presented to show the effects of other fractional parameters $ \alpha $ on the obtained approximate solutions.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.