Abstract

Fractal analysis of sea surface backscattering signal (sea clutter in radar terminology) represents a novel technique for the study of sea surface roughness. When Kirchhoff's assumption is satisfied, the fractal dimension of the signal is linearly related to the fractal dimension of the sea surface. Moreover, such a relationship is independent of transmitted frequency, polarization, time, space, sea wave propagation direction, incident angle (within the constraint of Kirchoff's assumption) and significant wave height. Nevertheless, for a low grazing angle, the Kirchhoff approximation does not hold and the behavior of the sea clutter fractal dimension cannot be theoretically predicted. The purpose of this paper is to investigate the fractal dimension of the sea clutter at low grazing angle, in order to extend the theoretical results. Moreover, the effects of the presence of a target on the sea surface are analyzed by means of the fractal dimension. Such an analysis is performed by using live recorded clutter data. In detail, the fractal dimension's dependence on space, time, sea wave propagation direction, sea wave height, transmitted polarization and presence of targets is investigated. A discussion on the use of the sea clutter fractal dimension for sea surface monitoring is addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.