Abstract
We study the pointwise partial ordering of representative functions for a monotone operator and in particular we focus on the bigger conjugate representative functions that represent a fixed initial (non-maximal) monotone operator. The first problem considered is that of constructing a new representative function from a given member of this class when wanting to add an additional monotonically related point. This study allows us to prove that all bigger conjugate representable monotone sets are monotonically closed. This result sheds light on the structure of the domains for maximal monotone operators and enables us to study the sum theorem for FPV operators in Banach spaces which posses a dual space that has a strictly convex renorm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.