Abstract

The purpose of this paper is to derive a generalization of Kohnen-Zagier's results concerning Fourier coefficients of modular forms of half integral weight belonging to Kohnen's spaces, and to refine our previous results concerning Fourier coefficients of modular forms of half integral weight belonging to Kohnen's spaces. Employing kernel functions, we construct a correspondence $\varPsi$ from modular forms of half integral weight $k+1/2$ belonging to Kohnen's spaces to modular forms of weight $2k$. We explicitly determine the Fourier coefficients of $\varPsi(f)$ in terms of those of $f$. Moreover, under certain assumptions about $f$ concerning the multiplicity one theorem with respect to Hecke operators, we establish an explicit connection between the square of Fourier coefficients of $f$ and the critical value of the zeta function associated with the image $\varPsi(f)$ of $f$ twisted with quadratic characters, which gives a further refinement of our results concerning Fourier coefficients of modular forms of half integral weight belonging to Kohnen's spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.