Abstract

We present a local Bäcklund Wahlquist-Estabrook (WE) transformation for a supersymmetric Korteweg-de Vries (KdV) equation. As in the scalar case, such type of transformation generates infinite hierarchies of solutions and also implicitly gives the associated (local) conserved quantities. A nice property is that every of such hierarchies admits a nonlinear superposition principle, starting for an initial solution, including as a particular case the multisolitonic solutions of the system. We discuss the symmetries of the system and we present in an explicit way its local conserved quantities with the help of the associated Gardner transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.