Abstract
This paper considers switching stabilization of some general nonlinear systems. Assuming certain properties of a convex linear combination of the nonlinear vector fields, two ways of generating stabilizing switching signals are proposed, i.e., the minimal rule and the generalized rule, both based on a partition of the time-state space. The main theorems show that the resulting switched system is globally uniformly asymptotically stable and globally uniformly exponentially stable, respectively. It is shown that the stabilizing switching signals do not exhibit chattering, i.e., two consecutive switching times are separated by a positive amount of time. In addition, under the generalized rule, the switching signal does not exhibit Zeno behavior (accumulation of switching times in a finite time). Stability analysis is performed in terms of two measures so that the results can unify many different stability criteria, such as Lyapunov stability, partial stability, orbital stability, and stability of an invariant set. Applications of the main results are shown by several examples, and numerical simulations are performed to both illustrate and verify the stability analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.