Abstract
A Gelfand–Cetlin polytope is a convex polytope obtained as an image of certain completely integrable system on a partial flag variety. In this paper, we give an equivalent description of the face structure of a GC-polytope in terms of so called the face structure of a ladder diagram. Using our description, we obtain a partial differential equation whose solution is the exponential generating function of f-vectors of GC-polytopes. This solves the open problem (2) posed by Gusev et al. (2013).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.