Abstract
The results of Sjöstrand [J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett. 1 (1994) 185–192] and Sugimoto [M. Sugimoto, L p -boundedness of pseudo-differential operators satisfying Besov estimates, I, J. Math. Soc. Japan 40 (1988) 105–122] on a mapping property of pseudo-differential operators are two different kinds of extensions of the pioneering work by Calderón and Vaillancourt [A.P. Calderón, R. Vaillancourt, On the boundedness of pseudo-differential operators, J. Math. Soc. Japan 23 (1971) 374–378]. The objective of this paper is to show that these two results, which appeared to be independent ones, can be proved based on the same principle. For the purpose, we use the α-modulation spaces, a parameterized family of function spaces, which include Besov spaces and modulation spaces as special cases. As an application, we also discuss the L 2 -boundedness of the commutator [ σ ( X , D ) , a ] , where a ( x ) is a Lipschitz function and σ belongs to an α-modulation space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.