Abstract

Electron beam melting (EBM) is one of the most widely used additive manufacturing (AM) methods for metallic components and has demonstrated great potential to fabricate high-end components in the aerospace and energy industries. The thermal condition within a melt pool and the complicated thermal cycles during the EBM process are of interest but not yet well-understood, and will significantly affect the microstructural homogeneity of as-manufactured nickel-base superalloy components. To establish the thermal profile evolution during electron beam melting of nickel-base superalloys, Inconel 718 (IN718) is manufactured and characterized in the as-manufactured condition, on account of its representative segregation and precipitation behaviours. The microstructure gradient within a build, specifically the Laves phase volume fraction evolution, is rationalized with the solidification condition and the following in-situ annealing. Precipitations of carbide/nitride/carbonitride, δ and γ′/γ′′ are also discussed. Hardness is measured and correlated to the Laves phase volume fraction evolution and the precipitation of γ′/γ′′. The results of this study will (i) shed light on microstructure evolution during the EBM process with regard to thermal history; and (ii) deepen the current understandings of solidification metallurgy for additive manufacturing of Ni-base superalloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.