Abstract

Abstract In this paper, the stick-slip vibration in oilwell drillstring is studied. The drilling system is modelled as a lumped-parameter torsional pendulum and the interaction between the drill bit and the rock is treated as Coulomb friction. Equation of motion of the drill bit is established and the dynamic responses of the drill bit are obtained. A drilling system with the drillstring length 3000 m is analysed, in which the system parameters are selected by reference to the actual drilling situation. After the slip vibrations in the initial stage, final state of the drill bit is a stable stick-slip vibration of which the limit cycle is a closed loop. In order to find the stability of the limit cycle corresponds to the periodically stick-slip vibration, different initial conditions for the drill bit are studied. Results show that the drill bit will lead to a periodic motion and the phase trajectories ultimately converge to the same limit cycle corresponds to stable stick-slip vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.