Abstract
We study the production of Hot Jupiters (HJs) in stellar binaries. We show that the "eccentric Kozai-Lidov" (EKL) mechanism can play a key role in the dynamical evolution of a star-planet-star triple system. We run a large set of Monte Carlo simulations including the secular evolution of the orbits, general relativistic precession, and tides, and we determine the semi-major axis, eccentricity, inclination and spin-orbit angle distributions of the HJs that are produced. We explore the effect of different tidal friction parameters on the results. We find that the efficiency of forming HJs when taking the EKL mechanism into account is higher then previously estimated. Accounting for the frequency of stellar binaries, we find that this production mechanism can account for about 30% of the observed HJ population. Current observations of spin-orbit angles are consistent with this mechanism producing \sim 30% of all HJs, and up to 100% of the misaligned systems. Based on the properties of binaries without a HJ in our simulations, we predict the existence of many Jupiter-like planets with moderately eccentric and inclined orbits and semi-major axes of several AU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.