Abstract

Certain infrared absorption features in tritiated as well as proton-irradiated samples of solid deuterium have been attributed to the formation of bubblelike electronic states localized in the lattice. These bubblelike states are shown to be energetically stable in the Wigner–Seitz model of the crystal and the gap between the ground-state energies in the bubble and the quasi-free states of the electron is calculated. An initial trapping of the electron by a vacancy is assumed in calculating the localized state energy. Calculations based on a continuum model of the solid yield the radius of such bubbles to close agreement with that obtained from the observed Stark shift of the vibrational levels of the neighbouring molecules due to the localized electrons. The model is used to interpret the radiation-induced absorption in proton-irradiated solid deuterium in the spectral region 4000–7500 cm−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.