Abstract

The flow around a heated spherical drop in a viscous non-isothermal gaseous medium with uniformly distributed constant-power heat sources (sinks) acting inside is theoretically described in the Stokes approximation. It is assumed that the mean temperature of the drop surface can differ substantially from the temperature of the ambient gaseous medium. An analytical expression for the drag force and drift velocity in the gravity field is derived by solving hydrodynamic equations with allowance for the temperature dependence of viscosity, thermal conductivity, and density of the gaseous medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.