Abstract

We realize the physical N-anyon Hilbert spaces, introduced previously via unitary representations of the group of diffeomorphisms of the plane, as N-fold braided-symmetric tensor products of the 1-particle Hilbert space. This perspective provides a convenient Fock space construction for nonrelativistic anyon quantum fields along the more usual lines of boson and fermion fields, but in a braided category, and clarifies how discrete (lattice) anyon fields relate to anyon fields in the continuum. We also see how essential physical information is encoded. In particular, we show how the algebraic structure of the anyonic Fock space leads to a natural anyonic exclusion principle related to intermediate occupation number statistics, and obtain the partition function for an idealized gas of fixed anyonic vortices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.