Abstract

Heat transport processes through radiation in a dissipative flow of Al2O3 and CuO oil-based nanofluids has been discussed. The equations modeling the flow has been transformed using similarity variables into coupled nonlinear higher order ordinary differential equations. These equations are solved by employing the fourth order Runge-Kutta algorithm and a shooting technique. The results for the embedded parameters were tabulated and depicted graphically. The study revealed that oil-based nanofluid of CuO has a better rate of heat transfer than Al2O3 oil-based nanofluid with increased radiation. Thus, the study concluded that CuO oil-based nanofluid has a superior heat transfer characteristic and thus preferred for radiation hardening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.