Abstract

This paper investigates the breaking load of ice sheets up to 6 m thick, against a sloping structure. The reference model by Croasdale, which the design code is based on, neglects the edge moment arising from the loading eccentricity, as well as a second-order bending effect induced by the axial loading in its formulation. In this paper, the model is reformulated to incorporate these effects into the governing equation, as well as to account for the occurrence of local crushing at the point of contact between the ice sheet and sloping structure. For thin ice, predictions from the modified model resemble closely those by Croasdale's model. As the ice thickness increases, however, significant deviations from the reference model can be observed. For thick ice, the terms omitted for brevity in the reference model have a significant influence, without which the breaking load is under-estimated. It is furthermore demonstrated that against sloping structures, the dominant failure mode is that of flexural, except in very limiting cases where it switches to crushing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call