Abstract
Traffic equilibrium models are fundamental to the analysis of transportation systems. The stochastic user equilibrium (SUE) model which relaxes the perfect information assumption of the deterministic user equilibrium is one such model. The aim of this paper is to develop a new user equilibrium model, namely the MDM-SUE model, that uses the marginal distribution model (MDM) as the underlying route choice model. In this choice model, the marginal distributions of the path utilities are specified but the joint distribution is not. By focusing on the joint distribution that maximizes expected utility, we show that MDM-SUE exists and is unique under mild assumptions on the marginal distributions. We develop a convex optimization formulation for the MDM-SUE. For specific choices of marginal distributions, the MDM-SUE model recreates the optimization formulation of logit SUE and weibit SUE. Moreover, the model is flexible since it can capture perception variance scaling at the route level and allows for modeling different user preferences by allowing for skewed distributions and heavy tailed distributions. The model can also be generalized to incorporate bounded support distributions and discrete distributions which allows to distinguish between used and unused routes within the SUE framework. We adapt the method of successive averages to develop an efficient approach to compute MDM-SUE traffic flows. In our numerical experiments, we test the ability of MDM-SUE to relax the assumption that the error terms are independently and identically distributed random variables as in the logit models and study the additional modeling flexibility that MDM-SUE provides on small-sized networks as well as on the large network of the city of Winnipeg. The results indicate that the model provides both modeling flexibility and computational tractability in traffic equilibrium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.