Abstract

This paper takes a detailed look at a subject that occurs in various contexts in mathematics, the fixed-point sets of torus actions on flag manifolds, and considers it from the (perhaps nontraditional) perspective of moment maps and length functions on Weyl groups. The approach comes from earlier work of the author where it is shown that certain singular flows in the Hamiltonian system known as the Toda lattice generate the action of a group A on a flag manifold, where A is a direct product of a non-maximal torus and unipotent group. As a first step in understanding the orbits of A in connection with the Toda lattice, this paper seeks to understand the fixed points of the non-maximal tori in this setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.