Abstract

A population that adapts to gradual environmental change will typically experience temporal variation in its population size and the selection pressure. On the basis of the mathematical theory of inhomogeneous branching processes, we present a framework to describe the fixation process of a single beneficial allele under these conditions. The approach allows for arbitrary time-dependence of the selection coefficient s(t) and the population size N(t), as may result from an underlying ecological model. We derive compact analytical approximations for the fixation probability and the distribution of passage times for the beneficial allele to reach a given intermediate frequency. We apply the formalism to several biologically relevant scenarios, such as linear or cyclic changes in the selection coefficient, and logistic population growth. Comparison with computer simulations shows that the analytical results are accurate for a large parameter range, as long as selection is not very weak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.