Abstract

Let 𝔞 be an ideal of a commutative Noetherian local ring R, and let M and N be two finitely generated R-modules. Let t be a positive integer. It is shown that if the support of the generalized local cohomology module [Formula: see text] is finite for all i < t, then the set of associated prime ideals of the generalized local cohomology module [Formula: see text] is finite. Also, if the support of the local cohomology module [Formula: see text] is finite for all i < t, then the set [Formula: see text] is finite. Moreover, we prove that gdepth (𝔞+ Ann (M),N) is the least integer t such that the support of the generalized local cohomology module [Formula: see text] is an infinite set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.