Abstract

If T is a (commutative unital) ring extension of a ring R, then Λ(T /R) is defined to be the supremum of the lengths of chains of intermediate fields between RP/P RP and TQ/QTQ, where Q varies over Spec(T) and P:= Q ∩ R. The invariant σ(R):= sup Λ(T/R), where T varies over all the overrings of R. It is proved that if Λ(S/R)< ∞ for all rings S between R and T, then (R, T) is an INC-pair; and that if (R, T) is an INC-pair such that T is a finite-type R-algebra, then Λ(T/R)< ∞. Consequently, if R is a domain with σ(R) < ∞, then the integral closure of R is a Prufer domain; and if R is a Noetherian G-domain, then σ(R) < ∞, with examples showing that σ(R) can be any given non-negative integer. Other examples include that of a onedimensional Noetherian locally pseudo-valuation domain R with σ(R)=∞.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.