Abstract

This paper presents a numerical study of inverse parameter identification problems in fracture mechanics. Inverse methodology is applied to the detection of subsurface cracks and to the study of propagating cracks. The procedure for detecting subsurface cracks combines the finite element method with a sequential quadratic programming algorithm to solve for the unknown geometric parameters associated with the internal flaw. The procedure utilizes finite element substructuring capabilities in order to minimize the processing and solution time for practical problems. The finite element method and non‐linear optimization are also used in determining the direction a crack will propagate in a heterogeneous planar domain. This procedure involves determining the direction that produces the maximum strain energy release for a given increment of crack growth. The procedure is applied to several numerical examples. The results of these numerical studies coincide with theoretical predictions and experimentally observed crack behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.