Abstract

AbstractThere exist many spatial discretization schemes that are well able to provide accurate and stable approximations for isothermal turbulent flows. Comparatively little analysis has been made of the performance of these schemes in the presence of temperature gradients driven by combustion. In this paper, the effects of temperature gradients on numerical stability are explored. A surprising result is that temperature gradients in the flow have a tendency to impinge on left half plane (LHP) stability of the spatial discretization scheme. Reasons for this tendency are explored and two remedies are proposed: one based on the particular class of finite difference schemes, and one based on an alternative method of boundary condition specification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.