Abstract

Line locking (LL) of absorption-line systems is a clear signature of the dynamical importance of radiation-pressure force in driving astrophysical flows, with recent findings suggesting that it may be common in quasars exhibiting multiple intrinsic narrow absorption-line (NAL) systems. In this work, we probe the phase space conducive to LL and follow the detailed kinematics of those systems that may lock at the velocity separation of the C iv λ λ1548.19, 1550.77 doublet. We find that a small volume of the phase-phase admits LL, suggesting a high degree of fine-tuning between the physical properties of locked systems. The stability of LL against quasar luminosity variations is quantified with implications for the long-term variability amplitude of quasars and the velocity-separation statistic between multiple NAL systems. The high occurrence of LL by the C iv doublet implies that the hidden extreme-UV emission from quasars is unlikely to be significantly underestimated by current models. Further, the ratio of the LL velocity to the outflow velocity may serve as a powerful constraint on the composition of the accelerating medium. We conclude that LL poses significant challenges to current theories for the formation of nonintervening NAL systems, and speculate that it may be a manifestation of expanding circumstellar shells around asymptotic giant branch stars in the quasar-host bulge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.