Abstract

Abstract The mean (ENM) of an ensemble of precipitation forecasts is generally more skillful than any of the members as verified against observations. A major reason is that the averaging filters out nonpredictable features on which the members disagree. Previous research showed that the nonpredictable features occur at small scales, in both numerical forecasts and Lagrangian persistence nowcasts. Hence, it is plausible that the unpredictable features filtered through ensemble averaging would also occur at small scales. In this study, the exact range of scales affected by averaging is determined by comparing the statistical properties of precipitation fields between the ENM and the individual members from a Storm-Scale Ensemble Forecasting (SSEF) system run during NOAA’s 2008 Hazardous Weather Testbed (HWT) Spring Experiment. The filtering effect of ensemble averaging results in a low-intensity bias for the ENM forecasts. It has been previously proposed to correct the ENM forecasts by recalibrating the intensities in the ENM using the probability density function (PDF) of rainfall values from the ensemble members. This procedure, probability matching (PM), leads to a new ensemble mean, the probability matched mean (PMM). Past studies have shown that the PMM appears more realistic and yields better skill as evaluated using traditional scores. However, the authors demonstrate here that despite the PMM having the same PDF of rainfall intensities as the ensemble members, the spectral structure and the spatial distribution of the precipitation field differs from that of the members. It is the lesser variability of the PMM fields at small scales that causes the better scores of the PMM relative to the ensemble members.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.