Abstract

Considering the interaction through mutual interference of the different radio devices, the channel selection (CS) problem in decentralized parallel multiple access channels can be modeled by strategic-form games. Here, we show that the CS problem is a potential game (PG) and thus the fictitious play (FP) converges to a Nash equilibrium (NE) either in pure or mixed strategies. Using a 2-player 2-channel game, it is shown that convergence in mixed strategies might lead to cycles of action profiles which lead to individual spectral efficiencies (SE) which are worse than the SE at the worst NE in mixed and pure strategies. Finally, exploiting the fact that the CS problem is a PG and an aggregation game, we present a method to implement FP with local information and minimum feedback.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.