Abstract

The paper is devoted to the comparative analysis of different CFD techniques used to solve the problem of high-pressure hydrogen release into the air. Three variations of a contemporary low-dissipation numerical technique (CABARET) are compared with each other and a conventional first-order numerical scheme. It is shown that low dissipation of the numerical scheme defines better resolution of the contact surface between released hydrogen and ambient air. As a result, the spatial structures of the jet and the reaction wave that arise during self-ignition are better resolved, which is useful for predicting the local effects of high-pressure hydrogen release. At the same time, the dissipation has little effect on the induction delay, so critical conditions of self-ignition can be reliably reproduced even via conventional numerical schemes. The test problem setups formulated in the paper can be used as benchmarks for compressible CFD solvers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call