Abstract

Lock-in thermography was employed to investigate the repair efficiency of a bonded repaired aerospace composite subjected to step-wise cycling mechanical loading. The studied component (substrate) was artificially damaged with a 5 mm circular notch and subsequently repaired with a tapered bonded patch. Critical and sub-critical damage of the repaired component was monitored via thermography during 5 Hz tension–tension fatigue. The examination of the acquired thermographs enabled the identification of the patch debonding propagation as well as the quantification of the stress magnification at the patch ends and the locus of the circular notch. It was found that fatigue mechanical loading yields both thermoelastic and hysterestic phenomena with the latter being more prominent prior to the failure of the studied repaired component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.