Abstract

To study the potential of 220Rn as a groundwater tracer, we analyzed different groundwater systems with a laboratory-proven radon-in-water detection system. However, with one single exception, no 220Rn was detected in the groundwater, although 222Rn was always present at high concentrations. Field observations of 220Rn and 222Rn in soil gas revealed soil water content to be the crucial control for 220Rn release from soil grains to soil pores. We identified water films around and water menisci between the soil grains to impede the diffusive transport of 220Rn. This finding was confirmed by the results of laboratory experiments with monazite pebbles and manganese sand, which both are 220Rn sources. Besides the water content, the laboratory experiments also identified the water flow (turbulent in the experiment versus laminar in groundwater) to control the 220Rn emanation. The laminar flow condition in groundwater, together with the soil water content, set a conceptual frame to explain why 220Rn can be detected in unsaturated soil but not in groundwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.