Abstract

The paper presents a new and fast algorithm to efficiently compute radix-10 logarithm of a decimal number. The algorithm uses 32-bit floating-point arithmetic, and is based on a digit-by-digit iterative computation that does not require look-up tables, curve fitting, decimal-binary conversion, or division operations; the number of iterations depends on the user defined precision. The algorithm produces error-free (infinite precision) results up to 7 decimal digits. A numerical example is shown for the purpose of illustration. The accuracy is analyzed for several decimal digits showing compliance with the IEEE 754-2008 standard. When implemented on to the Xilinx VirtexII FPGA, the architecture costs only 1,053 logic cells, runs at a maximum frequency of 44 MHz, and consumes 79 mW of power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.