Abstract
AbstractWhile deep‐learning downscaling algorithms can generate fine‐scale climate projections cost‐effectively, it is unclear how effectively they extrapolate to unobserved climates. We assess the extrapolation capabilities of a deterministic Convolutional Neural Network baseline and a Generative Adversarial Network (GAN) built with this baseline, trained to predict daily precipitation simulated by a Regional Climate Model (RCM) over New Zealand. Both approaches emulate future changes in annual mean precipitation well, when trained on historical data, though training on a future climate improves performance. For extreme precipitation (99.5th percentile), RCM simulations predict a robust end‐of‐century increase with future warming (∼5.8%/C on average from five simulations). When trained on a future climate, GANs capture 97% of the warming‐driven increase in extreme precipitation compared to 65% in a deterministic baseline. Even GANs trained historically capture 77% of this increase. Overall, GANs offer better generalization for downscaling extremes, which is important in applications relying on historical data.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.