Abstract

A continuous-time Markov branching process with a single type T of particles is considered in which any pair of particles T+T produces offspring independently of all other particles. In addition, any particle of type T also produces children. Representations for the extinction probabilities of this process are obtained under certain assumptions on the offspring distribution. To establish this result we apply the exponential generating function method for the solution of a stationary backward Kolmogorov system of differential equations (see [A. V. Kalinkin, {Theory Probab. Appl., 27 (1982), pp.~201--205]).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.