Abstract

Exponential extinction of incoherent radiation intensity in a random medium (sometimes referred to as the Beer-Lambert law) arises early in the development of several branches of science and underlies much of radiative transfer theory and propagation in turbid media with applications in astronomy, atmospheric science, and oceanography. We adopt a stochastic approach to exponential extinction and connect it to the underlying Poisson statistics of extinction events. We then show that when a dilute random medium is statistically homogeneous but spatially correlated, the attenuation of incoherent radiation with depth is often slower than exponential. This occurs because spatial correlations among obstacles of the medium spread out the probability distribution of photon extinction events. Therefore the probability of transmission (no extinction) is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.