Abstract
We investigate the quantum dynamical nature of hydrogen bonding in 1,2-ethanediol and monohydrated 1,2-ethanediol using different levels of ab initio theory. Global full-dimensional potential energy surfaces were constructed from PW91/cc-pVDZ, B3LYP/cc-pVDZ, and MP2/cc-pVDZ ab initio data for gas-phase and monohydrated 1,2-ethanediol, using a modified Shepard interpolation scheme. Zero-point energies and nuclear vibrational wave functions were calculated on these surfaces using the quantum diffusion Monte Carlo algorithm. The nature of intra- and intermolecular hydrogen bonding in these molecules was investigated by considering a ground-state nuclear vibrational wavefunction with reduced complete nuclear permutation and inversion (CNPI) symmetry. Separate wavefunction histograms were determined from the ground-state nuclear vibrational wavefunction by projection into bondlength coordinates. The O-H and O-O wavefunction histograms and vibrationally averaged distances were then used to probe the extent of intra- and intermolecular hydrogen bonding. From these data, we conclude that gas-phase ethanediol may possess a weak hydrogen bond, with a relatively short O-O distance but no detectable proton delocalization. Monohydrated ethanediol was found to exhibit no intramolecular hydrogen bonding but instead possessed two intermolecular hydrogen bonds, indicated by both shortening of the O-O distance and significant proton delocalization. The degree of proton delocalization and shortening of the vibrationally averaged O-O distance was found to be dependent on the ab initio method used to generate the potential energy surface (PES) data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.